S620 - Introduction To Statistical Theory - Homework 1

Enrique Areyan
 January 23, 2014

Formulate the scenarios described in Exercises 2.2, 2.3, and 2.4 as statistical decision problems.

1) Parameter Space: $\Theta=\{1,2\} \subseteq \mathbb{R}$, where $\theta=1 \in \Theta$ means that guard one is the wizard and $\theta=2 \in \Theta$ means guard 2 is the wizard.
2) Sample Space: $\mathcal{X}=\{(1,1),(1,0),(2,1),(2,0)\} \subseteq \mathbb{R}^{2}$, where $x=$ (guard, response), and guard $\in\{1,2\}$ stands for the guard randomly chosen to be questioned ("are you the wizard?"); and response being 1 if the guard says he is the wizard and 0 otherwise.
3) Family of Probability Distributions: $\mathcal{P}=\left\{P_{1}, P_{2}\right\}$, where P_{1} is the distribution in case guard 1 is the wizard and P_{2} is the distribution in case guard 2 is the wizard. The distributions are given by:

For P_{1} : we have: $P_{1}((1,1))=\frac{1}{2}, P_{1}((1,0))=0, P_{1}((2,1))=\frac{1}{6}, P_{1}((2,0))=\frac{1}{3}$
For P_{2} : we have: $P_{1}((1,1))=\frac{1}{6}, P_{1}((1,0))=\frac{1}{3}, P_{1}((2,1))=\frac{1}{2}, P_{1}((2,0))=0$
4) Action Space: $\mathcal{A}=\left\{a_{1}, a_{2}\right\}$, where $a_{1}=$ ask guard 1 for directions and $a_{2}=$ ask guard 2 for directions.
5) Loss Function: By our setup we have: $\Theta \times \mathcal{A}=\left\{\left(1, a_{1}\right),\left(1, a_{2}\right),\left(2, a_{1}\right),\left(2, a_{2}\right)\right\}$. Therefore: $L\left(\left(1, a_{1}\right)\right)=0$ (no loss, we have asked the right guard), $L\left(\left(1, a_{2}\right)\right)=1000$ galleons (as determined in the statement problem, this is the loss associated with a failure to catch Hogwart's Express). Likewise, $L\left(2, a_{1}\right)=1000$ and $L\left(2, a_{2}\right)=0$. I am assuming that asking the wrong guard leads to failure of catching Hogwart's Express.
6) Decision Rules: $d: \mathcal{X} \rightarrow \mathcal{A}$, according to our setup we have the $4^{2}=16$ possibilities for non-randomized decision rule $d: d((1,1))=a_{1} / a_{2}, d((1,0))=a_{1} / a_{2}, d((2,1))=a_{1} / a_{2}, d((2,0))=a_{1} / a_{2}$, where a_{1} / a_{2} means pick either a_{1} or a_{2}, e.g., $d((1,1))=a_{2}$ means that we ask guard 1 if he is a Wizard, he says yes, but choose to ask directions from guard 2.
(2.3)

1) Parameter Space: $\Theta=\{0,1\} \subseteq \mathbb{R}$, where $\theta=0 \in \Theta$ means no snow the next day and $\theta=1 \in \Theta$ means there will be snow the next day.
2) Sample Space: $\mathcal{X}=\{(0,0),(0,1),(1,0),(1,1)\} \subseteq \mathbb{R}^{2}$. In particular, an element of the space is of the form $x=\left(r_{1}, r_{2}\right) \in \mathcal{X}$, where $r_{i}=$ prediction of radio station i for $i=1,2$. The prediction is of the form $r_{i}=1$ if radio station i predicts there will be snow the next day and 0 otherwise.
3) Family of Probability Distributions: $\mathcal{P}=\left\{P_{0}, P_{1}\right\}$, where P_{0} is the distribution in case there will be no snow the next day, and P_{1} is the distribution otherwise. The distributions are given by:
For P_{0} : we have: $P_{0}((0,0))=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}=P_{0}((0,1))=P_{0}((1,0))=P_{0}((1,1))$; since each station information is i.i.d. and with equal probability $\frac{1}{2}$
For P_{1} : we have: $P_{1}((0,0))=\frac{1}{4} \cdot \frac{1}{4}=\frac{1}{16}, P_{1}((0,1))=\frac{1}{4} \cdot \frac{3}{4}=\frac{3}{16}, P_{1}((1,0))=\frac{3}{4} \cdot \frac{1}{4}=\frac{3}{16}, P_{1}((1,1))=\frac{3}{4} \cdot \frac{3}{4}=\frac{9}{16}$
4) Action Space: $\mathcal{A}=\{$ close school, open school $\}$
5) Loss Function: By our setup we have: $\Theta \times \mathcal{A}=\{(0$, close school), (0 , open school), (1 , close school), (1, open school) $\}$, e.g., the tuple (1 , open school) means the case when there is snow and the school remains open. Therefore: $L((0$, close school $))=c, L((0$, open school $))=0, L((1$, close school $))=c, L((1$, open school $))=2 c$, where c is a constant representing the cost of the decision made.
6) Decision Rules: $d: \mathcal{X} \rightarrow \mathcal{A}$, according to our setup we have the $4^{2}=16$ possibilities for nonrandomized decision rule $d: d((0,0))=$ close/open school, $d((0,1))=$ close/open school, $d((1,0))=$ close/open school, $d((1,1))=$ close/open school
7) Parameter Space: $\Theta=\{0,1\} \subseteq \mathbb{R}$, where $\theta=0 \in \Theta$ means the component is not functioning and $\overline{\theta=1 \in \Theta \text { means }}$ the component is functioning.
8) Sample Space: $\mathcal{X}=\{0,1\} \subseteq \mathbb{R}^{2}$, where $x=0 \in \mathcal{X}$ means the warning light if off and $x=1 \in \mathcal{X}$ means the warning light goes on.
9) Family of Probability Distributions: $\mathcal{P}=\left\{P_{0}, P_{1}\right\}$, where P_{0} is the distribution in case the component is not functioning, and P_{1} in case the component is functioning. The distributions are given by:
For P_{0} : we have: $P_{0}(0)=\frac{1}{3}, P_{0}(1)=\frac{2}{3}$.
For P_{1} : we have: $P_{1}(0)=\frac{3}{4}, P_{1}(1)=\frac{1}{4}$.
10) Action Space: $\mathcal{A}=\{$ stop launch, go on with launch $\}$
11) Loss Function: By our setup we have:
$\Theta \times \mathcal{A}=\{(0$, stop launch $),(0$, go on with launch $),(1$, stop launch $),(1$, go on with launch $)\}$, e.g., the tuple (1 , stop launch) represents the case when the component is functioning but the launch is stopped. Therefore, $L((0$, stop launch $))=0, L((0$, go on with launch $))=10$ billion $\$, L((1$, stop launch $))=5$ billion $\$$, $L((1$, go on with launch $))=0$
12) Decision Rules: $d: \mathcal{X} \rightarrow \mathcal{A}$, according to our setup we have the $2^{2}=4$ possibilities for non-randomized decision rule $d: d(0)=$ stop launch/go on with launch, $d(1)=$ stop launch/go on with launch, i.e., we can either stop or go on with the launch depending on the state of the warning light.
